Pharmacological targeting of GSK-3 and NRF2 provides neuroprotection in a preclinical model of tauopathy
نویسندگان
چکیده
Tauopathies are a group of neurodegenerative disorders where TAU protein is presented as aggregates or is abnormally phosphorylated, leading to alterations of axonal transport, neuronal death and neuroinflammation. Currently, there is no treatment to slow progression of these diseases. Here, we have investigated whether dimethyl fumarate (DMF), an inducer of the transcription factor NRF2, could mitigate tauopathy in a mouse model. The signaling pathways modulated by DMF were also studied in mouse embryonic fibroblast (MEFs) from wild type or KEAP1-deficient mice. The effect of DMF on neurodegeneration, astrocyte and microglial activation was examined in Nrf2+/+ and Nrf2-/- mice stereotaxically injected in the right hippocampus with an adeno-associated vector expressing human TAUP301L and treated daily with DMF (100mg/kg, i.g) during three weeks. DMF induces the NRF2 transcriptional through a mechanism that involves KEAP1 but also PI3K/AKT/GSK-3-dependent pathways. DMF modulates GSK-3β activity in mouse hippocampi. Furthermore, DMF modulates TAU phosphorylation, neuronal impairment measured by calbindin-D28K and BDNF expression, and inflammatory processes involved in astrogliosis, microgliosis and pro-inflammatory cytokines production. This study reveals neuroprotective effects of DMF beyond disruption of the KEAP1/NRF2 axis by inhibiting GSK3 in a mouse model of tauopathy. Our results support repurposing of this drug for treatment of these diseases.
منابع مشابه
Valproic Acid Ameliorates Locomotor Function in the Rat Model of Contusion via Alteration of Mst1, Bcl-2, and Nrf2 Gene Expression
Background: As a novel pro-apoptotic kinase, Mammalian sterile 20–like kinase 1 (Mst1) promotes programmed cell death in animal models of inflammatory diseases. This research aimed to determine the level of expression of Mst1 gene in a rat model of spinal cord injury (SCI) treated with valproic acid (VPA). Methods: Animals were divided into four groups: Contused animals (untreated); laminectom...
متن کاملGSK-3β downregulates Nrf2 in cultured cortical neurons and in a rat model of cerebral ischemia-reperfusion
The NF-E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway plays a critical role in protecting against oxidative stress in brain ischemia and reperfusion injury. Glycogen synthase kinase 3β (GSK-3β) may play a critical role in regulating Nrf2 in a Kelch-like ECH-associated protein 1 (Keap1)-independent manner. However, the relationship between GSK-3β and Nrf2 in brain ischemia...
متن کاملGlycogen synthase kinase-3beta inhibits the xenobiotic and antioxidant cell response by direct phosphorylation and nuclear exclusion of the transcription factor Nrf2.
The transcription factor Nrf2 (nuclear factor E2-related factor 2) regulates the expression of antioxidant phase II genes and contributes to preserve redox homeostasis and cell viability in response to oxidant insults. Nrf2 should be coordinated with the canonical cell survival pathway represented by phosphatidylinositol 3-kinase (PI3K) and the Ser/Thr kinase Akt but so far the mechanistic conn...
متن کاملAmyloid activates GSK-3beta to aggravate neuronal tauopathy in bigenic mice.
The hypothesis that amyloid pathology precedes and induces the tau pathology of Alzheimer's disease is experimentally supported here through the identification of GSK-3 isozymes as a major link in the signaling pathway from amyloid to tau pathology. This study compares two novel bigenic mouse models: APP-V717I x Tau-P301L mice with combined amyloid and tau pathology and GSK-3beta x Tau-P301L mi...
متن کاملThe Effect of Carvacrol on the Expression of Genes Hmox-1, iNOS, Nrf2 and NF-ҚB in the Spinal Cord of Experimental Autoimmune Encephalomyelitis Mice
Background: Multiple sclerosis (MS) is one of the most common diseases of the nervous system, characterized by inflammation of the central nervous system and oxidative stress. Carvacrol is a monoterpenoid phenol with antioxidant effects against free radical. The aim of this study was to evaluate the effect of carvacrol on the expression of Hmox-1, iNOS, Nrf2 and NF-ҚB genes in the spinal cord...
متن کامل